If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+1.9x-44=0
a = 4.9; b = 1.9; c = -44;
Δ = b2-4ac
Δ = 1.92-4·4.9·(-44)
Δ = 866.01
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.9)-\sqrt{866.01}}{2*4.9}=\frac{-1.9-\sqrt{866.01}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.9)+\sqrt{866.01}}{2*4.9}=\frac{-1.9+\sqrt{866.01}}{9.8} $
| 6x+4-5x^2=0 | | 2(6×+5)=4(4x+5) | | (2.)2(x+4)=28 | | a+20+2a-30=400 | | x²=106 | | 15x+4x+-11x= | | -5y+-11y+4y= | | y=5×+100 | | 8000x-65=9935 | | 36-3z=2(z-2) | | 22+5y=7y+17 | | x×8=24 | | 6x-16=7x-9 | | 2w+10=7w+22 | | 6v+10=2v+46 | | 5x-(-8)=13 | | 17r-r=4r+48 | | 14=41-3f | | 5₂+2n=41 | | y−9=11 | | h−8=4 | | j+17=24 | | 52+2n=41 | | -0,4x^2+40=0 | | (5x+4)(7-2x)=0 | | 3p^2-6=0 | | 5X+8=32-x | | 2x²+0.5=0 | | 10x+33=8X+41 | | 9-3(x+4)=15 | | 15y+17=27 | | y+35+35=140 |